
KubeDirector: 
Open Source Project
for Stateful Applications 
on Kubernetes



Today’s Speakers

Joel Baxter

@joel_k_baxter

Distinguished Engineer
BlueData

Tom Phelan

@tapbluedata

Co-Founder and Chief Architect
BlueData



Agenda

• Kubernetes (K8s) and Stateful / Stateless Applications
• Complex Stateful Applications on Kubernetes
• BlueData, BlueK8s, and KubeDirector
• KubeDirector Deep Dive
• KubeDirector Demonstration
• Key Takeaways 



What is Kubernetes (K8s?)

• Open source “platform” for container orchestration

• Platform building blocks vs. turnkey platform
– https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/#what-kubernetes-is-not

• Top use case is stateless / microservices deployments

• Evolving for stateful applications

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/


• Stateless
– Each application service instance is configured identically
– All information stored remotely
– “Remotely” refers to some persistent storage that has a life 

span different from that of the container
– Frequently referred to as “cattle”

Stateless Applications on K8s



• Stateful
– Each application service instance is configured differently
– Critical information stored locally
– “Locally” means that the application running in the 

container accesses the information via file system 
reads/writes rather than some remote access protocol

– Frequently referred to as “pets”

Stateful Applications on K8s?



Complex Stateful Applications

• Big Data / AI / Machine Learning / Deep Learning
• What do all these applications have in common?
– Require large amounts of data
– Use distributed processing, multiple tools / services
– When on-prem, typically deployed on bare-metal 
– Do not have a cloud native architecture

• No microservices
• Application instance-specific state



containers

cluster

Example: Hadoop in Containers

Running Hadoop clusters in containers:



Kubernetes – Components

• Objects
• Pods
• Statefulsets
• PersistentVolumes
• Operators
• Custom Resource Definitions



Kubernetes – Operators

• Operator
• A way of packaging, deploying, and managing a given application

• Operator Framework
• A set of developer and runtime tools to help accelerate the writing 

of a Operator

• Operator SDK
• An SDK that further hides the complexities of the Kubernetes API

Source: https://coreos.com/operators

https://coreos.com/operators


Kubernetes – Operators

• Application-specific means a new operator needs to 
be written for each application



What to Do?

• There needs to be an easier way to deploy and 
manage clusters running complex stateful applications



BlueK8s and KubeDirector

• BlueK8s is an Apache open source initiative focused 
on bringing enterprise support for complex stateful 
applications to Kubernetes

• A series of open source projects will be rolled out 
under the BlueK8s umbrella
– The first major project is “KubeDirector”: 

Source: www.bluedata.com/blog/2018/07/operation-stateful-bluek8s-and-kubernetes-director

https://github.com/bluek8s/kubedirector

https://www.bluedata.com/blog/2018/07/operation-stateful-bluek8s-and-kubernetes-director
https://github.com/bluek8s/kubedirector/wiki




Motivation

• Why create KubeDirector? Why use it?
– E.g. why not app-specific operators, Helm, Kubeflow…

• Reframed: which architecture enables features we 
want (current or future)?

• Find sweet spot for users between two extremes:
– Direct use of K8s APIs & “generic” deployment
– Hardcoded application-specific solutions

• Abstractions + features guided by domain focus



Domain Focus

• Interested in best supporting apps that:
– Are scale-out
– May have “non cloud-native” service architecture
– Have stateful cluster members
– Need to access data lakes
– Have user roles w/ distinct workflows and privileges
– Integrate w/ enterprise services for authentication, 

certificate and license management, etc.



KubeDirector Overview

• KubeDirector is a K8s “custom controller”
• Watches for custom resources (CRs) to appear/change
• Creates/modifies standard K8s resources (StatefulSets 

etc.) in response, to implement specs from CRs
• Differs from normal Kubernetes Operator pattern:

– No app-specific logic in KubeDirector code
– App deployment is data-driven from external app definitions
– Supports interactions among different apps + other objects



Deploy KubeDirector to K8s
kubectl create -f kubedirector/deployment.yaml



Separation of Concerns

• Application experts (on-site or elsewhere)
– Responsible for making app images/metadata/configscripts
– No need to write Go code or understand Operator concepts

• Administrators (on-site)
– Select which apps are available to end users
– Change app versions independently of KubeDirector upgrade

• End users
– Pick from menu of applications and config choices



Alternatives Comparison 1/2

• Support distinctions between IT, app expert, project 
manager, and data scientist
– Unlike Helm 2/3 & Kubeflow

• Integrate with K8s user authentication and ACLs
– Unlike Helm 2 (Tiller)

• Support post-deployment autoremediation, autoscale, 
and other lifecycle events w/ app-specific logic
– Unlike Helm 3 & Kubeflow



Alternatives Comparison 2/2

• Also a couple of behaviors not found in app-specific 
operators, and not a picnic in other solutions:
– Support end-user import of new application types
– Apply common features across multiple application types 

from different developers



KubeDirector Concepts



Custom Resource Definitions

• Primary CRD: KubeDirectorCluster
– Models any kind of application instance launchable by KubeDirector

• Other CRDs for related objects, e.g.
– App definitions (KubeDirectorApp)
– DataTaps and other shared storage
– Config sets for AD/LDAP integration for containers
– Machine Learning models

• This talk will concentrate on KubeDirectorCluster/App



• KubeDirector Administration
• Application Preparation
• Application Instance Deployment



Deployment

• Create custom resource definitions (CRDs) in your K8s 
cluster

• Deploy KubeDirector
– Normally runs in a Pod on same K8s cluster
– Authenticates to K8s API w/ privileged service account

• Configure KubeDirector global settings
– E.g. supply app definitions, set types of service & storage



• KubeDirector Administration
• Application Preparation
• Application Instance Deployment



App Definition Metadata

• App identifier/description/version
• Service endpoints
• Available “roles”, and container image per role
• Available deploy-time choices, and their effects on 

services per role
• Info for optional runtime setup package
• And more!



App Definition Example 1/3
apiVersion: kubedirector.bluedata.io/v1alpha1

kind: KubeDirectorApp

metadata:

name: spark221e2

spec:

label:

name: Spark 2.2.1 on centos7x with Jupyter

default_image_repo_tag: docker.io/bluedata/sparkbase:2.0

default_config_package:

package_url: https://s3.amazonaws.com/mybucket/spark221e2/appconfig.tgz



App Definition Example 2/3
- id: spark_master_ui

label:

name: Spark master (web UI)

endpoint:

port: 8080

is_dashboard: true

url_scheme: http

- id: spark_worker_ui

label:

name: Spark worker (web UI)

endpoint:

port: 8081

is_dashboard: true

url_scheme: http

roles:

- id: controller

cardinality: 1

- id: worker

cardinality: 0+

services:

- id: spark

label:

name: Spark master

endpoint:

port: 7077



App Definition Example 3/3

config:

selected_roles:
- controller
- worker

role_services:
- role_id: controller
service_ids:
- spark
- spark_master_ui

- role_id: worker
service_ids:
- spark_worker_ui



Application Setup Package

• Optional tgz injected into each container, contains:
– Entrypoint script
– Standard script functions for reading deployment info
– Any artifacts (config file templates etc.) required for setup

• Entrypoint script will be invoked at lifecycle events:
– This container has just been created
– Some other member(s) added to or removed from the 

cluster



Setup Script Actions

• Perform any setup that requires runtime info
– E.g. FQDNs of other member(s) of the cluster

• Enable and start appropriate services
– Can query the role of current node
– Services-to-start depend on role and deploy-time choices

• Can use features of KubeDirector Agent in future



• KubeDirector Administration
• Application Preparation
• Application Instance Deployment



Custom Resource Creation

apiVersion: "kubedirector.bluedata.io/v1alpha1"

kind: "KubeDirectorCluster"

metadata:

name: "spark-instance"

spec:

app: spark221e2

roles:

- id: controller

resources:

limits:

memory: "4Gi“

- id: worker

members: 2



Cluster Creation Sequence 1/2



Cluster Creation Sequence 2/2



Other Operations

• Shrink & expand of role member count is handled 
similarly

• All resources are automatically cleaned up if CR is 
deleted (because CR is their “owner”)

• End user can read the CR to see current status, service 
objects, event history, etc.



Key Takeaways

• Running complex stateful applications on Kubernetes 
is challenging today

• The goal of BlueK8s and KubeDirector is to make it 
easier to run such applications on Kubernetes

• Learn more about KubeDirector:
– https://github.com/bluek8s/kubedirector/wiki

https://github.com/bluek8s/kubedirector/wiki


Join the KubeDirector Community!

Joel Baxter
@joel_k_baxter

Tom Phelan
@tapbluedata

https://github.com/bluek8s

https://github.com/bluek8s

