

Agenda

● RBAC & Kubernetes

● Common Pitfalls

● Best Practices

● The Road To Least Privilege

● Demo

About Us

Co-Founder & VP of Product Management at Apolicy and has more than 20 years of experience in

security, identity, access and policies.

Prior to Apolicy, I co-founded Whitebox Security, a Data Access Governance platform that was acquired

by SailPoint Technologies (NYSE: SAIL).

I enjoy hiking, movies, snowboarding, Lego (but not stepping on them!), cooking (without burning stuff)

and traveling for fun.

Eran Leib
Co-Founder, VP Product Management

Daniel Pacak is an Open Source Engineer at Aqua Security. He works on Kubernetes and container

security related projects, while also taking part in maintaining the CNCF's project, Harbor.

When he isn't at work, he enjoys taking walks in the woods with his family.

Daniel Pacak
Open Source Engineer

"Role Based Access Control (RBAC)
is complex and takes more time and
effort than most organizations realize
in order to get it right.”

Gartner 2017

Role Based Access Control (RBAC)

● RBAC is a simple method of managing access in large systems

● In RBAC we group permissions and assign them to groups of users

● RBAC is a compromise between operations and security

● Security wants users with exact permissions per user

● Operations wants manageability

● It is important to find the balance, meaning, a good amount of roles

Roles, Roles, Roles & ClusterRoles

● A role is a group of rules

● Rule = a permission set

● Roles rules are scoped to a namespace

● ClusterRole rules scope is the cluster

● ClusterRoles can also be scoped down to
a namespace with the right configuration

Defining a role does not provide access

Role
Scope: Namespace

Label(s)

Rule(s)

ClusterRole
Label(s)

Rule(s)

Role
Rules

● Rules are the building blocks of roles

● Each rule addresses a key question:
What is allowed?

● A verb is an action, for example, get, create

● Kubernetes is an API first platform, hence,
resources are also defined as APIs and
API groups

● All rules are always ALLOWing access

Rule
Verb(s) Resource(s)

Rule
Verb(s) Resource(s)

Rule
Verb(s) Resource(s)

Resources - Permissions Targets

● Resources are defined top-down

● Each layer defined, narrows down the
applied resources

● Leaving the resources blank, translates to
“All resources in the API Group”

● A specific (resource) name would narrow
the selection to the specific resource

API Group
Group

Resource
Type

Name

NonResourceURL

● There are resources that are not API resources.
They are simply URLs. For example: /healthz

● Their access is controlled using Kubernetes permissions

● NonResourceURLs are defined as Cluster level objects
(even though they’re not actually cluster objects)

● To use them, they must be part of a ClusterRole and associated with
ClusterRoleBinding

Subjects

● Users, groups and service accounts are subjects in Kubernetes

● Associating roles with subjects assign access to subjects

● Access is granted directly or indirectly (through groups)

● The complete set of access is calculated and the result is the actual
access list for the user

● Kubernetes does not have DENY rules, therefore, all access is
augmented

Subject Types

Service
Account

IDP
User

IDP
Group

Service
Account
Group

Special
Groups

Automatically
populated

groups
prefixed with
system: like:

authenticated
Unauthenticated

masters

Automatically
populated
groups for

service
accounts.

One for every
namespace

and one
global

Users defined
internally in

Kubernetes to
run workloads

Users
authenticated
by the identity

provider

Groups from
the identity

provider
consists users

and other
groups

Connecting The Dots

● Role, rules, subjects, what’s next?
Binding roles and subjects with (Cluster)RoleBinding!

● RoleBinding and the binded Role are in the same namespace.

● When you bind to a (Cluster)Role you bind to all of its rules

● Bind service accounts from any namespace to roles in the role
binding namespace

● Yes… a role binding is for a single role
Yes… you cannot change the role binded, you have to re-create

Cluster

Complete structure visual

Namespace

Role

Rule

Verb(s) Resource(s)

Role Binding

Rule

Verb(s) Resource(s)

Rule

Verb(s) Resource(s)

Service
Account

IDP User IDP Group

Service
Account
Group

Special
Groups

ClusterRole

Rule

Verb(s) Resource(s)

CluserRole
Binding

Rule

Verb(s) Resource(s)

Rule

Verb(s) Resource(s)

What Can I Do?

● By now you probably understood that the to know if a user can or
cannot do something can be tricky

● Kubectl has a command called kubectl can-i to help us understand
if we can do something or to list all our permissions

● It is also very useful for cluster admins to figure out if a service
account has the permissions they think he has

● To use this there’s the ability to impersonate --as <user>

Knowing Effective Access Is A Must

● Compliance requirements, incidents investigations and operations
all requires understanding who can do what.

● Analyzing the effective access for subjects is challenging:
○ Direct vs indirect access
○ Resource definition is cumbersome and scoping makes it more complex
○ Built in groups, general hygiene are not helping either

● Large scale clusters, multi cloud and hybrid doesn’t make it easier

● All of the above combined is what you probably have

Examples

kubectl create role view-pods --namespace=webinar \
 --resource=pods --verb get,list,watch \
 --dry-run=client --output=yaml

kubectl create rolebinding webinar-ns-admin-can-view-pods \
 --namespace=webinar \
 --role=view-pods \
 --serviceaccount=webinar:webinar-ns-admin

kubectl describe clusterrole view

kubectl create rolebinding webinar-ns-admin-can-view-any-resource \
 --namespace=webinar \
 --clusterrole=view \
 --serviceaccount=webinar:webinar-ns-admin

Examples

kubectl auth can-i list pods \
 --namespace=webinar \
 --as system:serviceaccount:webinar:webinar-ns-admin
yes

kubectl auth can-i create pods \
 --namespace=webinar \
 --as system:serviceaccount:webinar:webinar-ns-admin
no

kubectl auth can-i --list --namespace=webinar \
 --as system:serviceaccount:webinar:webinar-ns-admin
Resources Non-Resource URLs Resource Names Verbs
pods [] [] [get list watch]

kubectl who-can list pods --namespace=webinar --output=wide
ROLEBINDING ROLE NAMESPACE SUBJECT TYPE SA-NAMESPACE
webinar-ns-admin-can-view-pods Role/view-pods webinar webinar-ns-admin ServiceAccount webinar

To Default Or Not To Default

● Kubernetes provides a default account per namespace

● If not defined explicitly, workloads will run under that account
It’s simple, easy & … usually WRONG

● This usually causes organizations to add access to
<namespace>:default account

● In turn, that account ends up with much more access than needed
 (hint: needed = nothing!)

● It is also harder to trace issues if you’re using a default account

Aggregate → ClusterRole

● ClusterRoles have a special
mechanism to aggregate their
rules to other ClusterRoles

● Kubernetes uses a Controller to
aggregate rules using special
labels

● This in turn allows extending
built in roles with custom
resources by aggregating their
access

ClusterRole X (destination)
aggregationRule:
 clusterRoleSelectors:
 - matchLabels:
 rbac.example.com/aggregate-to-monitoring:
"true"

ClusterRole A rules
ClusterRole B rules

ClusterRole A
(source)

labels:

rbac.example.com/aggregate-to-
monitoring: "true"

ClusterRole B
(source)

labels:

rbac.example.com/aggregate-to-
monitoring: "true"

RoleBinding → ClusterRole

● ClusterRoles are normally associated using ClusterRole bindings

● However, you can still associate a ClusterRole using a namespaced
role binding

● One of the purposes of this is to create a SINGLE cluster level role
with all around access, whilst scoping the access down using a role
binding

● For example, ClusterRole with create POD associated using a role
binding in namespace A will allow the subjects to create PODs only
in Namespace A

Examples
kubectl create clusterrole view-nodes --verb=get,list,watch --resource=node

kubectl create clusterrolebinding webinar-ns-admin-can-view-nodes \
 --namespace=webinar \
 --clusterrole=view-nodes \
 --serviceaccount=webinar:webinar-ns-admin

kubectl create clusterrole check-healthz \
 --verb=get --non-resource-url=/healthz

kubectl create clusterrolebinidng webinar-ns-admin-can-check-healthz \
 --clusterrole=check-healthz \
 --serviceaccount=webinar:webinar-ns-admin

kubect auth can-i get /healtz \
--as system:serviceaccount:webinar:webinar-ns-admin
yes

Common Pitfalls

● Validation is a common issue in the RBAC mechanism

● Creating a role doesn’t validate the rules

● Creating a role binding doesn’t validate the roles and subjects

● Changes of course do not trigger validations (modify or delete)

● Keeping your cluster hygiene is important to avoid loopholes

Common Pitfalls (2)

● Built in groups are a great mechanism as long as you use them
correctly

● A member of a built in group will always get that group access

● You should consider for every rule assigned to them if it is the right
place

● The most important ones are:
system:authenticated, system:unauthenticated,
system:serviceaccounts,
system:serviceaccounts.<namespace>

Least Privilege - What Is It Good For?

● The principle of least privilege is the idea that at any user, program,
or process should have only the bare minimum privileges necessary
to perform its function

● To achieve least privilege we need to have a clear picture of what
the user needs to do

● Service Accounts are simpler to keep as least privileges. Their
activities are set and would only change if the workload change

● For regular users, we can achieve “close to least privileges” and
adapt the access over time

Isolating Risky Access

● A great way of managing access on the road to least privilege is to
isolate risky access into designated roles

● That way, when needed to remove specific risky access it would be
much simpler and will not require breaking down more roles

● While doing so, avoid providing such access to built in groups as
their membership is uncontrolled

● The thought behind creating such roles is to group rules that are
required together

Least Privilege = Operational Headache?

● Maintaining just the right privileges for every user is challenging

● The trade off is always a tension point between security and
operations

● A reasonable approach is:

○ Service Accounts with the tightest least privileged
○ Normal users

■ Risky access in designated isolated roles and keep access to minimum
■ Non risky in a more “relaxed mode”
■ Focus your energy where it’s needed

Audit To The Rescue

● Are they actually using it? Is a question I often hear

● The answer is right in front of us: Audit Trail

● Kubernetes audit trail is very elaborate and helps tracking usage

● It is yet another stepping stone on the road to least privileged

● Keeping tabs and correlating with the effective access is still
complex though

Audit Log : Forbidden Anonymous User
{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "stage": "RequestReceived",
 "requestURI": "/api/v1/namespaces/webinar/pods",
 "verb": "list",
 "user": {
 "username": "system:anonymous",
 "groups": [
 "system:unauthenticated"
]
 },
 "userAgent": "curl/7.64.1",
 "objectRef": {
 "resource": "pods",
 "namespace": "webinar",
 "apiVersion": "v1"
 }
}

{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "stage": "ResponseComplete",
 "requestURI": "/api/v1/namespaces/webinar/pods",
 "verb": "list",
 "user": {
 "username": "system:anonymous",
 "groups": [
 "system:unauthenticated"
]
 },
 "userAgent": "curl/7.64.1",
 "objectRef": {
 "resource": "pods",
 "namespace": "webinar",
 "apiVersion": "v1"
 },
 "responseStatus": {
 "metadata": {},
 "status": "Failure",
 "reason": "Forbidden",
 "code": 403
 },
 "annotations": {
 "authorization.k8s.io/decision": "forbid",
 "authorization.k8s.io/reason": ""
 }
}

Audit Log : Forbidden with Access Token
{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "stage": "RequestReceived",
 "requestURI": "/api/v1/namespaces/webinar/pods",
 "verb": "list",
 "user": {
 "username":
"system:serviceaccount:webinar:webinar-ns-admin",
 "groups": [
 "system:serviceaccounts",
 "system:serviceaccounts:webinar",
 "system:authenticated"
]
 },
 "userAgent": "curl/7.64.1",
 "objectRef": {
 "resource": "pods",
 "namespace": "webinar",
 "apiVersion": "v1"
 }
}

{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "stage": "ResponseComplete",
 "requestURI": "/api/v1/namespaces/webinar/pods",
 "verb": "list",
 "user": {
 "username":
"system:serviceaccount:webinar:webinar-ns-admin",
 "groups": [
 "system:serviceaccounts",
 "system:serviceaccounts:webinar",
 "system:authenticated"
]
 },
 "userAgent": "curl/7.64.1",
 "objectRef": {
 "resource": "pods",
 "namespace": "webinar",
 "apiVersion": "v1"
 },
 "responseStatus": {
 "metadata": {},
 "status": "Failure",
 "reason": "Forbidden",
 "code": 403
 },
 "annotations": {
 "authorization.k8s.io/decision": "forbid",
 "authorization.k8s.io/reason": ""
 }
}

Audit Log : Allowed with Access Token
{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "stage": "RequestReceived",
 "requestURI": "/api/v1/namespaces/webinar/pods",
 "verb": "list",
 "user": {
 "username":
"system:serviceaccount:webinar:webinar-ns-admin",
 "groups": [
 "system:serviceaccounts",
 "system:serviceaccounts:webinar",
 "system:authenticated"
]
 },
 "userAgent": "curl/7.64.1",
 "objectRef": {
 "resource": "pods",
 "namespace": "webinar",
 "apiVersion": "v1"
 }
}

{
 "kind": "Event",
 "apiVersion": "audit.k8s.io/v1",
 "stage": "ResponseComplete",
 "requestURI": "/api/v1/namespaces/webinar/pods",
 "verb": "list",
 "user": {
 "username":
"system:serviceaccount:webinar:webinar-ns-admin",
 "groups": [
 "system:serviceaccounts",
 "system:serviceaccounts:webinar",
 "system:authenticated"
]
 },
 "userAgent": "curl/7.64.1",
 "objectRef": {
 "resource": "pods",
 "namespace": "webinar",
 "apiVersion": "v1"
 },
 "responseStatus": {
 "metadata": {},
 "code": 200
 },
 "annotations": {
 "authorization.k8s.io/decision": "allow",
 "authorization.k8s.io/reason": "RBAC: allowed by
RoleBinding \"webinar-ns-admin-view/webinar\" of ClusterRole
\"view\" to ServiceAccount \"webinar-ns-admin/webinar\""
 }
}

Step By Step For ServiceAccounts

● Use named accounts

● Separate your ServiceAccount with designated roles and bindings

● Use built in audit to track unused access

● Remove unused access over time

● Grant new required access exclusively through the designated roles

Step By Step For ServiceAccounts

Remove Access

Based on usage

Grant Access

Through designated
roles

Review Audit

For usage of access

Ongoing
Least

Privileged

Setup Audit3
● Make sure the audit is

turned on
● Configure it to match your

needs

Create Designated
Roles & Bindings2

● Create roles & bindings in
each scope

● Associate them to the user

Use A Named
Account1

● Create an Service Account
in the namespace

● Set the account in the
workload

Day 0 Day 1+

5 Things To Do Today

● Start using named accounts - even if your account currently
doesn’t have any special access

● Disable automount token = THE most least privileged

● Think twice before assigning access to system: subjects that are
groups

● Make sure your clusters don’t have loose ends - keep it clean

● Use the audit capabilities to help with visibility

It’s time for

Better Kubernetes

Be Risk Smart

Assess workload
exposure and prioritize

risks for action

Be Declarative

Achieve the workload
state you’ve declared

Be Right

Prevent issues
before they arise

