
Improving Data Locality for Analytics
Jobs on Kubernetes Using Alluxio

Adit Madan | Alluxio �
Gene Pang | Alluxio

Alluxio Overview

Data locality with Spark and Alluxio

Kubernetes Overview

Spark and Alluxio in Kubernetes

Alluxio Innovations for Structured Data

Outline

2

Data Ecosystem - Beta Data Ecosystem 1.0

COMPUTE

STORAGE STORAGE

COMPUTE

3

Co-located

Data stack journey and innovation paths

Co-located
compute & HDFS

on the same cluster

Disaggregated
compute & HDFS

on the same cluster

MR / Hive
HDFS

Hive

HDFS

Disaggregated

Burst HDFS data in
the cloud,

public or private

Support Presto, Spark
and other computes
without app changes

Enable & accelerate
big data on

object stores

Transition to Object
store

HDFS for Hybrid Cloud

Support more
frameworks

▪  Typically compute-bound
clusters over 100%
capacity

▪  Compute & I/O need to
be scaled together even
when not needed

▪  Compute & I/O can be
scaled independently but I/
O still needed on HDFS
which is expensive

1 2

3

4

5

Data Orchestration for the Cloud

Java File API HDFS Interface S3 Interface REST API POSIX Interface

HDFS Driver Swift Driver S3 Driver NFS Driver

Independent scaling of compute & storage

Alluxio Data Orchestration for the Cloud

Structured
Data Catalog

Intelligent
Caching

Data
Transformation

Data
Management

Global
Namespace

7

Host

Alluxio

Spark

Alluxio Alluxio

Spark

Alluxio

Spark Spark

or

Read more at https://www.alluxio.io/blog/kubernetes-alluxio-and-the-disaggregated-analytics-stack/

Elastic Data for Elastic Compute
▪ Improve Data locality

•  Big data analytics or ML
•  Cache data close to compute

▪ Enable high-speed data sharing across jobs

•  A staging storage layer
▪ Unification of persistent storage

•  Data abstraction across different storage

Spark + Alluxio Data Locality

Without K8s

Spark Workflow (w/o Alluxio)

9

Cluster Manager
(i.e. YARN/Mesos)

Application
Spark

Context s3://data/

Worker Node

1) run Spark job

Worker Node

Spark Executor3) launch executors
and launch tasks

4) access data and compute

2) allocate executors

Takeaway:	Remote	data,	no	locality	

Step I: Schedule Compute to Data Location

10

Cluster Manager
(i.e. YARN/Mesos)Application

Spark
Context

Alluxio
Client

Alluxio
Masters

HostA: 196.0.0.7

Alluxio
Worker

HostB: 196.0.0.8

Alluxio
Worker

1.2) allocate on [HostA]

block1

block2

1.1) where is block1? 1.1) block1 is
served by [HostA]

Alluxio	client	implements	HDFS	compatible	API	
Retrieves	block	location	info		

Alluxio	masters	keep	track	of	block	to	worker	mapping	
Serve	a	list	of	worker	nodes	containing	the	block	

Step 2: Detect+Exchange Data w/ local Worker

11

s3://data/

Spark Executor

Alluxio
WorkerAlluxio

Client

HostB: 196.0.0.8

Alluxio
Worker

HostA: 196.0.0.7

block1

Alluxio
Masters

block1?

[HostA] Efficient I/O via local fs
(e.g., /mnt/ramdisk/) or
local domain socket
(/opt/domain)

Spark	Executor	finds	local	Alluxio	Worker	
Mechanism:	Hostname	comparison	

Spark	Executor	talks	to	local	Alluxio	Worker	
Mechanism:	Either	short-circuit	access	(via	local	

FS)	or	local	domain	socket	

Recap: Spark Architecture w/ Alluxio

12

Cluster Manager
(i.e. YARN/Mesos)

Application
Spark

Context s3://data/Alluxio
Client

Alluxio
Masters

Worker Node
Spark

Executor Alluxio
WorkerAlluxio

Client

Worker Node

Alluxio
Worker

1) run spark job

2.2) allocate executors

4) access Alluxio for data
and compute

2.1) talk to Alluxio for
where the data cache is

Step	1:	Help	Spark	schedule	compute	to	data	cache	
Step	2:	Enable	Spark	to	access	local	Alluxio	cache	

3) launch executors
and launch tasks

Kubernetes Overview

“an open-source container-orchestration system for automating application deployment,
scaling, and management.”

Kubernetes (K8s) is…

14

▪ Platform agnostic cluster management
▪ Service discovery and load balancing
▪ Storage orchestration
▪ Horizontal scaling
▪ Self-monitoring and self-healing

▪ Automated rollouts and rollbacks

Container Orchestration

15

▪ Node
▪ A VM or physical machine

▪ Container
▪ Container = Image once running on Docker Engine

▪ Pod
▪ Schedulable unit of one or more containers running together

▪ Controller
▪ Controls the desired state such as copies of a Pod

▪ DaemonSet
▪ A Controller that ensures each Node has only one such Pod

▪ Persistent Volume
▪ A storage resource with lifecycle independent of Pods

Key K8s Terms

16

Spark + Alluxio Data Locality

In K8s environment

▪ Spark 2.3 added native K8s support
▪ spark-submit talks to API Server to launch Driver
▪ Spark Driver launches Executor Pods
▪ When the application completes,
▪ Executor Pods terminate and are cleaned up

▪ Driver Pod persists logs and remains in
“COMPLETED” state

Spark on K8s Architecture

18

▪ Co-locate Spark Executor Pod w/ Alluxio Worker Pod
▪ Lifecycle
▪ Spark Executors are ephemeral
▪ Alluxio Workers persist across all Spark jobs

▪ Deployment order:

▪ Deploy Alluxio cluster first (masters+workers)
▪  An Alluxio Worker on each Node, by DaemonSet
▪ spark-submit launches Spark Driver + Executors

Deployment Model: Co-location

19

Worker Node

Alluxio
Worker PodAlluxio

Client

Spark Executor
Pod

Challenge 1: Executor Allocation to Workers

20

Application
Spark

Context
Alluxio
Client

allocate on [AlluxioWorkerPodA]?

block1

block2

block1? [AlluxioWorkerPodA]

HostA: 196.0.0.7

AlluxioWorkerPodA:
10.0.1.1

HostB: 196.0.0.8

AlluxioWorkerPodB:
10.0.1.2

Alluxio
Master

Pods

Some Node

Spark
Driver Pod

Some Node

Problem:	Worker	Pods	have	different	addresses	from	Nodes	

Solution: Alluxio Workers w/ hostNetwork

21

Application
Spark

Context
Alluxio
Client

allocate on [HostA]

block1

block2

block1? [HostA]

HostA: 196.0.0.7

HostA: 196.0.0.7

HostB: 196.0.0.8

HostB: 196.0.0.8

Alluxio
Master

Pods

Some Node

Spark
Driver Pod

Some Node

hostNetwork: true

hostNetwork: true

Network
adapter

Network
adapter

Alluxio	Workers	advertise	physical	host	address	
Spark	maps	Executor	Pods	to	physical	host	

Challenge 2: Identify host-local Alluxio Pod

22

Problem:		
Spark	Executor	Pod	has	different	hostName	

Hostname	HostA	!=	SparkExecPod1	
Local	Alluxio	Worker	not	identified!	

HostA: 196.0.0.7

Network
adapter

block1

Alluxio
Client

SparkExecPod1:
10.0.1,1

Alluxio
Master

block1? [HostA]

Challenge 3: Executor fails to find domain
socket

23

Problem:		
• Pods	don’t	share	the	File	System	

• Domain	socket	/opt/domain	is	in	Alluxio	Worker	Pod	

HostA: 196.0.0.7

Network
adapter

block1

Alluxio
Client

SparkExecPod1:
10.0.1,1

Alluxio
Master

block1? [HostA]

/opt/domain/

▪ Each Alluxio Worker has a UUID
▪ Share domain socket by a hostPath Volume
▪ Alluxio Client finds local worker’s domain

socket by finding file matching Worker
UUID
▪ Worker domain socket path
▪ /opt/domain/d -> /opt/domain/UUIDABC

▪ Mount hostPath Volume to Spark Executor
▪ Enabled in Spark 2.4

Solution: Share a hostPath Volume b/w Pods

24

HostA: 196.0.0.7

block1

Alluxio
Client

SparkExecPod1:
10.0.1,1

Alluxio
Master

block1? [HostA:
UUIDABC] /opt/domain/UUIDABC

UUID: UUIDABC

Recap: Spark + Alluxio Architecture on K8s

25

Application
Spark

Context
Alluxio
Client

Spark
Executor

Pod
Alluxio

Worker
Pod

Alluxio
Client

Alluxio
Worker

Pod

Worker Node

Worker Node

Spark
Driver Pod

Alluxio
Master

Pods

Some Node

Some Node

1) run spark job

2.1) talk to Alluxio for
where the data is

s3://data/
2.2) create Driver

4) access Alluxio for data
and compute

Step	1:	Help	Spark	schedule	compute	to	data	location	
Step	2:	Enable	Spark	to	access	data	locally	

3) launch executors
and launch tasks

▪ Enterprise environments may restrict hostNetwork and hostPath

▪ Alluxio workers need hostNetwork

▪ Plan: Support container network translation

▪ The domain socket file requires a hostPath volume

▪ Plan: Using Local Persistent Volumes

▪ Feedback/collaboration are welcome!

Limitations and Future Work

26

Alternate Deployment Options

Deploying Alluxio in K8s

28

Alluxio and Compute in different pods on the same host

When do you use this?

-  Compute, like Spark, is short running and ephemeral
-  Alluxio data orchestration & access layer is long running

and used across many jobs

Alluxio and Compute framework in the same pod

When do you use this?

-  Compute, like Presto, is long running
-  Data tier with Alluxio needs to be scaled along with

compute tier

Host

Alluxio

Spark

Alluxio Alluxio

Spark

Alluxio

Spark Spark

Host

Alluxio

Spark

Alluxio Alluxio

Spark

Alluxio

Spark Presto

Pod Legend:

Alluxio
Structured Data Management

Innovations for Structured Data

Common Alluxio Use Cases

30

…

…

Unified Interface

Unified Namespace

Caching and Locality

SQL Engines are popular

31

Storage Systems SQL Frameworks

Files/Objects

Directories

Raw Bytes

Storage
Optimized

Tables

Schemas

Rows/Columns

Compute
Optimized

Impedance Mismatch

Further Expand Benefits!

Benefits of Alluxio Data Orchestration

32

Storage
Systems

SQL
Frameworks

Caching
Unified Interface/Namespace
Schema-Aware Optimizations
Compute-Optimized Formats
Physical Data Independence

Provide Structured Data APIs
Focus on how frameworks interact with data

High-Level Philosophy

33

Cache Logical Data Access
Focus on caching what frameworks want

Alluxio Structured Data Management

Alluxio Structured Data Management

34

Storage
System

Transformation
Service

Structured Data
and Metadata

Logical Data
Access Layer

Structured
Data Client

SQL
Engine

Engine

Developer Preview in Alluxio 2.1

Target Environment

36

Presto

Hive
Connector

Hive
Metastore

Storage

Alluxio Structured Data Management

37

Presto

Alluxio Caching
Service

Alluxio Catalog
Service

Alluxio Transformation
Service

Hive
Connector

Alluxio
Connector

Hive
Metastore

Storage

Alluxio Catalog Service

38

Alluxio Catalog Service

Hive Metastore

Hive Under Database

Functionality
Manages metadata for structured data

Abstracts other database catalogs as
Under Database (UDB)

Benefits
Schema-aware optimizations

Simple deployment

Tighter integration with Presto

New plugin based on the Presto Hive connector

Available in Alluxio 2.1 distribution

In Progress: Merging connector into Presto codebase

Alluxio Presto Connector

39

Transformation Service

40

Transform data to be compute-optimized
independent from storage-optimized format
Coalesce Format Conversion

parquetcsv

Demo!

2 isolated AWS 10-node clusters
Presto + Hive Metastore + S3 Data
Presto + Alluxio + Hive Metastore + S3 Data

TPCDS sample dataset on S3
~10,000 CSV files

Demo

42

Attached existing Hive database into Alluxio Catalog

Alluxio Catalog served table metadata for Presto

Transformed store_sales by coalescing and converting CSV to Parquet

Demo Summary

43

Presto Without
Alluxio

20s
Alluxio

Transformations

7s
Alluxio Transformations

With Caching

3s

User community feedback/collaboration is important!
Future projects

New UDB implementations (AWS Glue)
More conversion formats (json)
DDL/DML workloads (CREATE TABLE, INSERT, etc.)
New Client APIs for structured data (Arrow)

Future Work

44

Try it out!
Documentation

Provide feedback
Feature requests and issues in Github Alluxio/alluxio

Developer Preview Available in Alluxio 2.1

45

Thank You!

