
How Cilium uses BPF to
Supercharge Kubernetes

Networking & Security

Mark Darnell, Senior PM Networking, SUSE
Roger Klorese, Senior PM Kubernetes, SUSE

Dan Wendlandt, Co-founder, Isovalent

Cloud Native Computing Foundation2

Agenda

• Why is SUSE Presenting Cilium? – A Little Context
• Why Cilium?

– A Bit of Cilium Background
– Use Cases – Some Fundamental Networking Needs
– Luxury/Future Use Cases – What we see on the Horizon

• A Deeper Dive into Cilium Internals
– What is BPF and How Does it Work?
– How Does Cilium Use BPF?

Cloud Native Computing Foundation3

Agenda

• Why is SUSE Presenting Cilium? – A Little Context
• Why Cilium?

– A Bit of Cilium Background
– Use Cases – Some Fundamental Networking Needs
– Luxury/Future Use Cases – What we see on the Horizon

• A Deeper Dive into Cilium Internals
– What is BPF and How Does it Work?
– How Does Cilium Use BPF?

Cloud Native Computing Foundation4

What is Cilium? (100 level Course)
Cilium is open source software for transparently securing the network
connectivity between application services deployed using Linux container
management platforms

Cloud Native Computing Foundation5

What is Cilium? (400 level course)

Service and API-Aware Linux
Networking & Security

Service Identity
Visibility + filtering based on

Kubernetes service labels, DNS-names,
etc, not IP addresses.

API-Aware Security
Goes beyond TCP/UDP ports, natively

understanding HTTP, gRPC, Kafka,
DNS, & more.

Performance & Scale
BPF datapath and control plane

optimized for highly dynamic, large
scale envs with high throughput.,

Multi-Cluster Routing
Provides simple, efficient, and secure

connectivity between multiple
Kubernetes clusters

Universal Encryption
Adds encryption to all traffic between

Cilium endpoints with no
application/pod changes.

Transparent to Apps
By running in the kernel, BPF + Cilium
require no changes by or coordinate

with app teams.
Open

Source
Powered

by BPF

Cloud Native Computing Foundation6

A (Tiny) Cloud Native Web Farm – Standard Kubernetes

FE
Pod1-1

BE
Pod1-2

FE
Pod2-1

BE
Pod2-2

Node Pod Container Pod NIC

Cloud Native Computing Foundation7

Security Requires Pod IPs – Standard Kubernetes

FE
Pod1-1

BE
Pod1-2

FE
Pod2-1

BE
Pod2-2

IP1-1

IP1-2

IP2-1

IP2-2

Node Pod Container Pod NIC

Cloud Native Computing Foundation8

iptables Rules to Enforce App/DB Security
Allow http protocol access to Apache running in pods [1,2]-1
iptables –i eth0 –p tcp –dport 80 –s ${clientIPRange} –d ${IP1-1}
iptables –i eth0 –p tcp –dport 80 –s ${clientIPRange} –d ${IP2-1}

Allow Apache to access Vitess/Mysql in pods [1,2]-2
iptables –i eth0 –p tcp –dport 3306 –s ${IP1-1} –d ${IP1-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP2-1} –d ${IP1-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP1-1} –d ${IP2-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP2-1} –d ${IP2-2}

Allow related packets on established or related connections
iptables -m state --state ESTABLISHED,RELATED -j ACCEPT

Drop all other packets
iptables –i eth0 –j DROP # or –j REJECT
iptables –o eth0 –j DROP # or –j REJECT

F
E Pod1-1

B
E Pod1-2

F
E Pod2-1

B
E Pod2-2IP1-1

IP1-2

IP2-1

IP2-2

Cloud Native Computing Foundation9

Better! Cilium Label-Aware Security & Visibility

9

endpointSelector:
matchLabels:

role = “backend”
ingress:

matchLabels:
role = “frontend”

23:15:01: allow: role=frontend → role=backend
23:16:34: deny: role=other → role=backend
…

Pod

role=frontend

Pod

role=backend
← HTTP GET / HTTP GET / →

deny

Pod

role=other
allow

Label-based Security Policy: Label-based Security Visibility Logs:

Cloud Native Computing Foundation10

Cilium Label-Aware Scalability

10

endpointSelector:
matchLabels:

role = “backend”
ingress:

matchLabels:
role = “frontend”

Allow Apache to access Vitess/Mysql in pods [1,2]-2
iptables –i eth0 –p tcp –dport 3306 –s ${IP1-1} –d ${IP1-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP2-1} –d ${IP1-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP1-1} –d ${IP2-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP2-1} –d ${IP2-2}
…

Create This ONE Time and Scale Out OR...modify and grow this each time a pod is added

Cloud Native Computing Foundation11

iptables Scalability/Performance Challenges

• iptables in Kubernetes
– Used for L3/L4 load-balancing (kube-proxy),

security filtering (some CNI plugins)
– Each pod create/delete => add/delete of

iptables config, across all hosts

• Control Plane
– Highly ephemeral Kubernetes pods
– iptables rules can’t be add/removed

incrementally (CPU, latency to update rules)

• Data Plane
– kube-proxy relies on per-packet linear

traversal of rules for load-balancing (CPU,
packet latency)

https://github.com/kubernetes/kubernetes/issues/44613

https://www.slideshare.net/LCChina/scale-kubernetes-to-support-50000-services

https://github.com/kubernetes/kubernetes/issues/44613
https://www.slideshare.net/LCChina/scale-kubernetes-to-support-50000-services

Cloud Native Computing Foundation12

Cilium Scalability / Performance

• Cilium + Kubernetes
– Implements L3/L4 LB, security filtering as

highly-optimized BPF programs

• Control Plane
– Incremental BPF map updates + BPF

templating make pod addition lightweight
– Scales to: 5K nodes, 100K pods, 20K svcs

• Data Plane Scalability/Performance
– Highly optimized BPF programs
– Efficient hash-lookups, rather than linear

traversals via kube-proxy

12

Scaling K8s env from 30K è 60K pods has
minimal and temporary CPU consumption.
https://cilium.io/blog/2019/04/24/cilium-15/

Latency with BPF-based NodePort vs. kube-proxy(iptables).
https://cilium.io/blog/2019/08/20/cilium-16/

https://cilium.io/blog/2019/04/24/cilium-15/
https://cilium.io/blog/2019/08/20/cilium-16/

Cloud Native Computing Foundation13

Another Cilium Option - DNS-aware Security

- toFQDNs:
- matchPattern: "*.domain.com"
toPorts:
- ports:

- port: '443'
protocol: TCP

13

Pod DNS
Server

foo.domain.com →

← 18.1.1.1

18.1.1.1HTTP GET / →

← 200 OK

Pod DNS
Server

www.leaker.com →

← 20.1.1.1

20.1.1.1HTTP GET / →

drop

Cloud Native Computing Foundation14

Why Did SUSE Choose Cilium for CaaSP V4?

• Identity Aware Security (labels or DNS) Reduces Op-Ex via simple policy
declarations that require no manual intervention as pods/nodes scale

• Underlying tool (BPF/eBPF) is architecturally superior and more efficient
for highly dynamic workloads and their corresponding networking
requirements => Reduces Cap-Ex via better hardware utilization

• Reducing Op-Ex and Cap-Ex with one feature and its underlying BPF is
more than sufficient reason to take a strong look at Cilium

• Advanced functionality and additional performance optimizations
occurring rapidly within Cilium…and let’s take a look at some of those

Cloud Native Computing Foundation15

Cilium Envoy Acceleration (3X gain)

15

More info in KubeCon EU 2018 slides:
Accelerating Envoy and Istio with Cilium and the Linux Kernel
https://bit.ly/2G7DfIY

https://bit.ly/2G7DfIY

Cloud Native Computing Foundation16

Cluster

Multi-Cluster Service Routing

metadata:
annotations:

io.cilium/global-service: "true"

16

Cluster

frontend-1 frontend-2 frontend-3

backend-1 backend-2 backend-1 backend-2

Backend
Service

frontend-1 frontend-2

Backend
Service

Cloud Native Computing Foundation17

Transparent Encryption

17

Cluster

NodeNode Node

Cilium CNI

Encryption

Pod
Pod PodPod

Pod

Cloud Native Computing Foundation18

API Firewall

18

Cloud Native Computing Foundation19

Data Store Authorization
apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
[...]
specs:
- endpointSelector:
matchLabels:
app: cassandra

ingress:
- toPorts:
- ports:
- port: "9042"
protocol: TCP
l7proto: cassandra
l7:
- query_action: "select"
query_table: "myTable"

19

Cloud Native Computing Foundation20

Agenda

• Why is SUSE Presenting Cilium? – A Little Context
• Why Cilium?

– A Bit of Cilium Background
– Use Cases – Some Fundamental Networking Needs
– Luxury/Future Use Cases – What we see on the Horizon

• A Deeper Dive into Cilium Internals
– What is BPF and How Does it Work?
– How Does Cilium Use BPF?

21

What is BPF / eBPF?
Flexible: Executes custom logic in the Linux kernel.

Safe: BPF code is verified to not crash/hang kernel.

Fast: JIT-compiled to run at native speed.

Humble origins:

Berkeley Packet Filter

tcpdump -n dst host 192.168.1.1

Learn More: http://docs.cilium.io/en/latest/bpf

BPF Tech Adoption
● L3-L4 Load balancing
● Network security
● Traffic optimization
● Profiling

https://code.fb.com/open-
source/linux/

● QoS & Traffic optimization
● Network Security
● Profiling
● http://vger.kernel.org/lpc-

bpf2018.html#session-1

● Replacing iptables with BPF
● NFV & Load balancing (XDP)
● Profiling & Tracing

https://goo.gl/6JYYJW

● Performance Troubleshooting
● Tracing & Systems Monitoring
● Networking

http://www.brendangregg.com/blo
g/2016-03-05/linux-bpf-
superpowers.html

22

https://code.fb.com/open-source/linux/
http://vger.kernel.org/lpc-bpf2018.html
https://goo.gl/6JYYJW
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html

Cilium: Bringing the Power of BPF to Kubernetes & Service Mesh

23

KubernetesOrchestration
Plane:

Network Data
Plane (CNI):

Service Mesh
(optional)

App1 App2 App3

BPF Concepts #1: Programs and Hook Points

submit_bio submit_bh()

journal_submit_commit_record()

jbd2_journal_commit_transaction()

mb_cache_list()

BPF Program Source Code

BPF
hook

Execution Stack in the Kernel

“Function-as-a-Service” for kernel events

llvm / clang

bpf() syscall

Verifier +
JIT compiler

with strong safety guarantees and
native kernel performance

BPF Concepts #2: Maps

BPF Maps

Kernel

Userspace
BPF-Aware

Tool

ç bpf_map_lookup_elem()
bpf_map_update_elem() è

Highly Efficient:

• Fine-grained update of BPF
program config data (e.g.,
policy/load-blancing rules)

• Accumulation of visibility data in-
kernel, with only summaries
exported to userspace.

Efficient data structures that persist across function invocation.

/sys/bpffs

https://lwn.net/Articles/664688/

https://lwn.net/Articles/664688/

Putting it Together: BPF Networking Filtering Example

eth0

connect(…)
write(…)

Kernel

Userspace

BPF-Aware ToolApp
Workload

Tool generates BPF program
to filter packets based on
contents of a BPF Map.

1

2 Tool compiles to BPF
program to byte code

3 Tool uses bpf() syscall to load
byte code into kernel at hook
point that sees each IP packet.
Kernel verifies safety of code,
JIT-compiles for native perf. 4

BPF Maps

5 Userspace tool inserts IPs to
block to as entry in a BPF map.

TCP/IP
stock

(create packet)

6 Application calls connect() and
writes data to socket. BPF
program is run for each packet.

bpf(…)

Clang

27

How Cilium Uses BPF

eth0

connect(…)

Kernel

Userspace

CiliumApp
Workload

BPF Maps

BPF
SCHED_CLS

K8s
pod

Kubernetes API

Workload Identity
Service Mappings
Network Policy

Cilium-generated BPF
programs control:

• Pod-to-Pod Network Connectivity.
• Service-based Load-balancing.
• Network Visibility and Security

Enforcement

Questions

Cloud Native Computing Foundation29

Cilium Community

https://github.com/cilium/cilium

10,000+ Commits

107 Contributors
from

https://cilium.io/slack

https://cilium.io/slack

© 2018 Cloud Native Computing Foundation30

Cloud Native Computing Foundation31

Feel Free to Reach Out…

Dan Wendlandt, dan@isovalent.com
Mark Darnell, mark.darnell@suse.com
Roger Klorese, roger.klorese@suse.com

mailto:dan@isovalent.com
mailto:mark.darnell@suse.com
mailto:roger.klorese@suse.com

Thank You
From SUSE and Isovalent – be sure to visit us at Kubecon San Diego!

