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Agenda

• Why is SUSE Presenting Cilium? – A Little Context
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– What is BPF and How Does it Work?
– How Does Cilium Use BPF?
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What is Cilium? (100 level Course)
Cilium is open source software for transparently securing the network
connectivity between application services deployed using Linux container
management platforms
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What is Cilium? (400 level course)

Service and API-Aware Linux 
Networking & Security 

Service Identity
Visibility + filtering based on 

Kubernetes service labels, DNS-names, 
etc, not IP addresses.

API-Aware Security
Goes beyond TCP/UDP ports, natively 

understanding  HTTP, gRPC, Kafka, 
DNS, & more.

Performance & Scale
BPF datapath and control plane 

optimized for highly dynamic, large 
scale envs with high throughput., 

Multi-Cluster Routing
Provides simple, efficient, and secure 

connectivity between multiple 
Kubernetes clusters

Universal Encryption
Adds encryption to all traffic between 

Cilium endpoints with no 
application/pod changes.

Transparent to Apps 
By running in the kernel, BPF + Cilium 
require no changes by or coordinate 

with app teams.  
Open 

Source
Powered 

by BPF
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A (Tiny) Cloud Native Web Farm – Standard Kubernetes
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Security Requires Pod IPs – Standard Kubernetes
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iptables Rules to Enforce App/DB Security
# Allow http protocol access to Apache running in pods [1,2]-1
iptables –i eth0 –p tcp –dport 80 –s ${clientIPRange} –d ${IP1-1}
iptables –i eth0 –p tcp –dport 80 –s ${clientIPRange} –d ${IP2-1}

# Allow Apache to access Vitess/Mysql in pods [1,2]-2
iptables –i eth0 –p tcp –dport 3306 –s ${IP1-1} –d ${IP1-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP2-1} –d ${IP1-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP1-1} –d ${IP2-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP2-1} –d ${IP2-2}

# Allow related packets on established or related connections
iptables -m state --state ESTABLISHED,RELATED -j ACCEPT

# Drop all other packets
iptables –i eth0 –j DROP # or –j REJECT
iptables –o eth0 –j DROP # or –j REJECT

F
E Pod1-1

B
E Pod1-2

F
E Pod2-1

B
E Pod2-2IP1-1

IP1-2

IP2-1

IP2-2
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Better!  Cilium Label-Aware Security & Visibility

9

endpointSelector:
matchLabels:

role = “backend”
ingress: 

matchLabels: 
role = “frontend”

23:15:01:  allow: role=frontend → role=backend 
23:16:34:  deny: role=other → role=backend 
…

Pod

role=frontend

Pod

role=backend
← HTTP GET / HTTP GET / → 

deny

Pod

role=other
allow

Label-based Security Policy: Label-based Security Visibility Logs:
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Cilium Label-Aware Scalability

10

endpointSelector:
matchLabels:

role = “backend”
ingress: 

matchLabels: 
role = “frontend”

# Allow Apache to access Vitess/Mysql in pods [1,2]-2
iptables –i eth0 –p tcp –dport 3306 –s ${IP1-1} –d ${IP1-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP2-1} –d ${IP1-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP1-1} –d ${IP2-2}
iptables –i eth0 –p tcp –dport 3306 –s ${IP2-1} –d ${IP2-2}
…

Create This ONE Time and Scale Out OR...modify and grow this each time a pod is added
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iptables Scalability/Performance Challenges

• iptables in Kubernetes
– Used for L3/L4 load-balancing (kube-proxy), 

security filtering (some CNI plugins)  
– Each pod create/delete => add/delete of 

iptables config, across all hosts

• Control Plane
– Highly ephemeral Kubernetes pods
– iptables rules can’t be add/removed 

incrementally (CPU, latency to update rules)

• Data Plane
– kube-proxy relies on per-packet linear 

traversal of rules for load-balancing  (CPU, 
packet latency)

https://github.com/kubernetes/kubernetes/issues/44613

https://www.slideshare.net/LCChina/scale-kubernetes-to-support-50000-services

https://github.com/kubernetes/kubernetes/issues/44613
https://www.slideshare.net/LCChina/scale-kubernetes-to-support-50000-services
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Cilium Scalability / Performance 

• Cilium + Kubernetes 
– Implements L3/L4 LB, security filtering as 

highly-optimized BPF programs

• Control Plane
– Incremental BPF map updates + BPF 

templating make pod addition lightweight
– Scales to: 5K nodes, 100K pods, 20K svcs

• Data Plane Scalability/Performance 
– Highly optimized BPF programs 
– Efficient hash-lookups, rather than linear 

traversals via kube-proxy

12

Scaling K8s env from 30K è 60K pods has 
minimal and temporary CPU consumption.
https://cilium.io/blog/2019/04/24/cilium-15/

Latency with BPF-based NodePort vs. kube-proxy(iptables).
https://cilium.io/blog/2019/08/20/cilium-16/

https://cilium.io/blog/2019/04/24/cilium-15/
https://cilium.io/blog/2019/08/20/cilium-16/
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Another Cilium Option - DNS-aware Security

- toFQDNs:
- matchPattern: "*.domain.com"
toPorts:
- ports:

- port: '443'
protocol: TCP

13

Pod DNS
Server

foo.domain.com → 

← 18.1.1.1

18.1.1.1HTTP GET / → 

← 200 OK

Pod DNS
Server

www.leaker.com → 

← 20.1.1.1

20.1.1.1HTTP GET / → 

drop
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Why Did SUSE Choose Cilium for CaaSP V4?

• Identity Aware Security (labels or DNS) Reduces Op-Ex via simple policy 
declarations that require no manual intervention as pods/nodes scale

• Underlying tool (BPF/eBPF) is architecturally superior and more efficient 
for highly dynamic workloads and their corresponding networking 
requirements => Reduces Cap-Ex via better hardware utilization

• Reducing Op-Ex and Cap-Ex with one feature and its underlying BPF is 
more than sufficient reason to take a strong look at Cilium

• Advanced functionality and additional performance optimizations 
occurring rapidly within Cilium…and let’s take a look at some of those
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Cilium Envoy Acceleration (3X gain)

15

More info in KubeCon EU 2018 slides:
Accelerating Envoy and Istio with Cilium and the Linux Kernel
https://bit.ly/2G7DfIY

https://bit.ly/2G7DfIY
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Cluster

Multi-Cluster Service Routing

metadata:
annotations:

io.cilium/global-service: "true"

16

Cluster

frontend-1 frontend-2 frontend-3

backend-1 backend-2 backend-1 backend-2

Backend
Service

frontend-1 frontend-2

Backend
Service
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Transparent Encryption

17

Cluster

NodeNode Node

Cilium CNI

Encryption

Pod
Pod PodPod

Pod
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API Firewall

18
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Data Store Authorization
apiVersion: "cilium.io/v2"
kind: CiliumNetworkPolicy
[...]
specs:
- endpointSelector:
matchLabels:
app: cassandra

ingress:
- toPorts:
- ports:
- port: "9042"
protocol: TCP
l7proto: cassandra
l7:
- query_action: "select"
query_table: "myTable"

19
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What is BPF / eBPF?
Flexible: Executes custom logic in the Linux kernel. 

Safe: BPF code is verified to not crash/hang kernel. 

Fast:   JIT-compiled to run at native speed.

Humble origins: 

Berkeley Packet Filter

tcpdump -n dst host 192.168.1.1

Learn More: http://docs.cilium.io/en/latest/bpf



BPF Tech Adoption
● L3-L4 Load balancing
● Network security
● Traffic optimization
● Profiling

https://code.fb.com/open-
source/linux/

● QoS & Traffic optimization
● Network Security
● Profiling
● http://vger.kernel.org/lpc-

bpf2018.html#session-1

● Replacing iptables with BPF
● NFV & Load balancing (XDP)
● Profiling & Tracing

https://goo.gl/6JYYJW

● Performance Troubleshooting
● Tracing & Systems Monitoring
● Networking

http://www.brendangregg.com/blo
g/2016-03-05/linux-bpf-
superpowers.html

22

https://code.fb.com/open-source/linux/
http://vger.kernel.org/lpc-bpf2018.html
https://goo.gl/6JYYJW
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html


Cilium:  Bringing the Power of BPF to Kubernetes & Service Mesh

23

KubernetesOrchestration 
Plane: 

Network Data 
Plane (CNI): 

Service Mesh
(optional)

App1 App2 App3



BPF Concepts #1:  Programs and Hook Points

submit_bio submit_bh() 

journal_submit_commit_record()

jbd2_journal_commit_transaction() 

mb_cache_list()

BPF Program Source Code

BPF
hook

Execution Stack in the Kernel 

“Function-as-a-Service” for kernel events

llvm / clang

bpf() syscall

Verifier + 
JIT compiler

with strong safety guarantees and 
native kernel performance 



BPF Concepts #2:  Maps

BPF Maps

Kernel

Userspace
BPF-Aware 

Tool

ç bpf_map_lookup_elem()
bpf_map_update_elem() è

Highly Efficient: 

• Fine-grained update of BPF 
program config data (e.g., 
policy/load-blancing rules)

• Accumulation of visibility data in-
kernel, with only summaries 
exported to userspace.    

Efficient data structures that persist across function invocation. 

/sys/bpffs

https://lwn.net/Articles/664688/

https://lwn.net/Articles/664688/


Putting it Together:  BPF Networking Filtering Example

eth0

connect(…)
write(…)

Kernel

Userspace

BPF-Aware ToolApp
Workload

Tool generates BPF program 
to filter packets based on 
contents of a BPF Map.   

1

2 Tool compiles to BPF 
program to byte code

3 Tool uses bpf() syscall to load 
byte code into kernel at hook 
point that sees each IP packet.  
Kernel verifies safety of code, 
JIT-compiles for native perf. 4

BPF Maps

5 Userspace tool inserts IPs to 
block to as entry in a  BPF map.  

TCP/IP 
stock

(create packet)

6 Application calls connect() and 
writes data to socket.  BPF 
program is run for each packet.   

bpf(…)

Clang
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How Cilium Uses BPF

eth0

connect(…)

Kernel

Userspace

CiliumApp
Workload

BPF Maps

BPF
SCHED_CLS

K8s
pod

Kubernetes API

Workload Identity
Service Mappings
Network Policy

Cilium-generated BPF 
programs control:

• Pod-to-Pod Network Connectivity. 
• Service-based Load-balancing.
• Network Visibility and Security 

Enforcement 



Questions
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Cilium Community

https://github.com/cilium/cilium

10,000+ Commits

107 Contributors
from

https://cilium.io/slack

https://cilium.io/slack
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Feel Free to Reach Out…

Dan Wendlandt, dan@isovalent.com
Mark Darnell, mark.darnell@suse.com
Roger Klorese, roger.klorese@suse.com

mailto:dan@isovalent.com
mailto:mark.darnell@suse.com
mailto:roger.klorese@suse.com


Thank You
From SUSE and Isovalent – be sure to visit us at Kubecon San Diego!


