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Introductions

Oleg Chunikhin
CTO, Kublr

✔ 20+ years in software architecture & development

✔ Working w/ Kubernetes since its release in 2015

✔ CTO at Kublr—an enterprise ready container 
management platform

✔ Twitter @olgch; @kublr

Like what you hear? Tweet at us! 
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Building a Reliable System with Kubernetes

• Day 1: trivial, K8S will restart my pod!

• Day 30: this is not so simple...

• What Kubernetes does, can, and doesn’t do

• Full stack reliability: tools and approaches
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Kubernetes Cluster

K8S Architecture Refresher: Components

The master, agent, etcd, API, overlay network, and DNS
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Cluster

K8S Architecture Refresher: API Objects

Nodes, pods, services, and persistent volumes
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K8S Reliability Tools: Probes & Controllers

Pod Probes
Liveness and readiness check
• TCP, HTTP(S), exec

Controllers
ReplicaSet
• Maintain specific number of identical replicas

Deployment
• ReplicaSet + update strategy, rolling update

StatefulSet
• Deployment + replica identity, persistent volume stability

DaemonSet
• Maintain identical replicas on each node (of a specified set)

Operators
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• Resource framework
• Standard: CPU, memory, disk

• Custom: GPU, FPGA, etc.

• Requests and limits
• Kube and system reservations

• no swap

• Pod eviction and disruption budget (resource starving)
• Pod priority and preemption (critical pods)
• Affinity, anti-affinity, node selectors & matchers

K8S Reliability Tools: Resources & Scheduling
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K8S Reliability Tools: Autoscaling

Horizontal pod autoscaler (HPA)

Vertical pod autoscaler (VPA)
• In-place updates - WIP (issue #5774)

Cluster Autoscaler
• Depends on infrastructure provider - uses node groups

AWS ASG, Azure ScaleSets, ...

• Supports AWS, Azure, GCE, GKE, Openstack, Alibaba Cloud
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Applications/pods/containers
“Middleware”

• Operations: monitoring, log collection, alerting, etc.
• Lifecycle: CI/CD, SCM, binary repo, etc.
• Container management: registry, scanning, governance, etc.

Container Persistence: cloud native storage, DB, messaging
Container Orchestrator: Kubernetes

• “Essentials”: overlay network, DNS, autoscaler, etc.
• Core: K8S etcd, master, worker components
• Container engine: Docker, CRI-O, etc.

OS: kernel, network, devices, services, etc.
Infrastructure: “raw” compute, network, storage

Full Stack Reliability
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Architecture 101

• Layers are separate and independent

• Disposable/“restartable” components

• Re-attachable dependencies (including data)

• Persistent state is separate from disposable 
processes
Pets vs cattle - only data is allowed to be pets 
(ideally)
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If a node has a problem...
• Try to fix it (pet)
• Replace or reset it (cattle)

Infrastructure and OS

Tools
• In-cluster: npd, weaveworks kured, ...

• hardware, kernel, servicer, container 
runtime issues

• reboot
• Infrastructure provider automation

• AWS ASG, Azure Scale Set, ...
• External   node auto recovery logic

• Custom + infrastructure provider API
• Cluster management solution
• (Future) cluster API
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Components
• etcd

• Master: API server, controller 
manager, scheduler

• Worker: kubelet, kube-proxy

• Container runtime: Docker, 
CRI-O

Already 12 factor

Kubernetes Components: Auto-Recovery

Monitor liveliness, automate 
restart
• Run as services

• Run as static pods

Dependencies to care about
• etcd data

• K8S keys and certificates

• Configuration
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K8S multi-master
• Pros: HA, scaling

• Cons: need LB (server or client)

etcd cluster
• Pros: HA, data replication

• Cons: latency, ops complexity

etcd data
• Local ephemeral

• Local persistent (survives node failure)

• Remote persistent (survives node replacement)

Kubernetes Components: Multi-Master

API Server

etcd data

controller 

manager

scheduler

etcd

kubectl

kubelet

@olgch, @kublr



• Persistent volumes

• Volume provisioning

• Storage categories
• Native block storage: AWS EBS, Azure Disk, vSphere volume, 

attached block device, etc.

• HostPath

• Managed network storage: NFS, iSCSI, NAS/SAN, AWS EFS, etc.

• Some of the idiosyncrasies
• Topology sensitivity (e.g. AZ-local, host-local)

• Cloud provider limitations (e.g. number of attached disks)

• Kubernetes integration (e.g. provisioning and snapshots)

Container Persistence
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• Integrates with Kubernetes
• CSI, FlexVolume, or native
• Volume provisioners
• Snapshots support

• Runs in cluster or externally
• Approach

• Flexible storage on top of backing storage
• Augmenting and extending backing storage

• Backing storage: local, managed, Kubernetes PV
• Examples: Rook/Ceph, Portworx, Nuvoloso, GlusterFS, Linstor, 

OpenEBS, etc. 

Cloud Native Storage
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Operations: monitoring, log collection, alerting, etc.

Lifecycle: CI/CD, SCM, binary repo, etc.

Container management: registry, scanning, governance, etc.

Deployment options:

• Managed service

• In Kubernetes

• Deploy separately

Middleware
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• Region to region; cloud to cloud; cloud to on-prem (hybrid)
• One cluster (⚠) vs cluster per location (✔)

Tasks
• Physical network connectivity: VPN, direct
• Overlay network connectivity: Calico BGP peering, native routing, …
• Cross-cluster DNS: CoreDNS
• Cross-cluster deployment: K8S federation
• Cross-cluster ingress, load balancing: K8S federation, DNS, CDN
• Cross-cluster data replication

• native: e.g. AWS EBS, Snapshots inter-region transfer
• CNS level: e.g. Ceph geo-replication
• database level: e.g. Yugabyte geo-replication, sharding, ...
• application level

Something Missing? Multi-Site
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To Recap...

• Kubernetes provides robust tools for application reliability

• Underlying infrastructure and Kubernetes components 
recovery is responsibility of the cluster operator

• Kubernetes is just one of the layers

• Remember Architecture 101 and assess all layers accordingly

• Middleware, and even CNS, can run in Kubernetes and be 
treated as regular applications to benefit from K8S capabilities

• Multi-site HA, balancing, failover is much easier with K8S and 
the cloud native ecosystem. Still requires careful planning!
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Q&A
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Oleg Chunikhin
CTO | Kublr

oleg@kublr.com

Thank you!

Take Kublr for a test drive!
kublr.com/deploy

Free non-production license
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