
Achieving True Reliability & Disaster Recovery
for Mission Critical Apps
Oleg Chunikhin |CTO

Introductions

Oleg Chunikhin
CTO, Kublr

✔ 20+ years in software architecture & development

✔ Working w/ Kubernetes since its release in 2015

✔ CTO at Kublr—an enterprise ready container
management platform

✔ Twitter @olgch; @kublr

Like what you hear? Tweet at us!

Automation

Ingress

Custom
Clusters

Infrastructure

Logging Monitoring

Observability

API
Usage

Reporting

RBAC IAM

Air Gap TLS

Certificate
Rotation

Audit

Storage Networking
Container
Registry

CI / CD App Mgmt

Infrastructure

Container Runtime Kubernetes

OPERATIONS SECURITY &
GOVERNANCE

What’s Kublr?

@olgch, @kublr

Building a Reliable System with Kubernetes

• Day 1: trivial, K8S will restart my pod!

• Day 30: this is not so simple...

• What Kubernetes does, can, and doesn’t do

• Full stack reliability: tools and approaches

@olgch, @kublr

Kubernetes Cluster

K8S Architecture Refresher: Components

The master, agent, etcd, API, overlay network, and DNS

Master

API Server

etcd data

controller

manager

scheduler etcd

kubectl

Worker

kubelet

container

runtime

overlay

network

cluster

DNS

kube-proxy

@olgch, @kublr

Cluster

K8S Architecture Refresher: API Objects

Nodes, pods, services, and persistent volumes

Node 1 Node 2

Pod A-1

10.0.0.3

Cnt1

Cnt2

Pod A-2

10.0.0.5

Cnt1

Cnt2

Pod B-1

10.0.0.8

Cnt3

SrvA

10.7.0.1

SrvB

10.7.0.3

Persistent

Volume

@olgch, @kublr

K8S Reliability Tools: Probes & Controllers

Pod Probes
Liveness and readiness check
• TCP, HTTP(S), exec

Controllers
ReplicaSet
• Maintain specific number of identical replicas

Deployment
• ReplicaSet + update strategy, rolling update

StatefulSet
• Deployment + replica identity, persistent volume stability

DaemonSet
• Maintain identical replicas on each node (of a specified set)

Operators

@olgch, @kublr

• Resource framework
• Standard: CPU, memory, disk

• Custom: GPU, FPGA, etc.

• Requests and limits
• Kube and system reservations

• no swap

• Pod eviction and disruption budget (resource starving)
• Pod priority and preemption (critical pods)
• Affinity, anti-affinity, node selectors & matchers

K8S Reliability Tools: Resources & Scheduling

@olgch, @kublr

K8S Reliability Tools: Autoscaling

Horizontal pod autoscaler (HPA)

Vertical pod autoscaler (VPA)
• In-place updates - WIP (issue #5774)

Cluster Autoscaler
• Depends on infrastructure provider - uses node groups

AWS ASG, Azure ScaleSets, ...

• Supports AWS, Azure, GCE, GKE, Openstack, Alibaba Cloud

@olgch, @kublr

Applications/pods/containers
“Middleware”

• Operations: monitoring, log collection, alerting, etc.
• Lifecycle: CI/CD, SCM, binary repo, etc.
• Container management: registry, scanning, governance, etc.

Container Persistence: cloud native storage, DB, messaging
Container Orchestrator: Kubernetes

• “Essentials”: overlay network, DNS, autoscaler, etc.
• Core: K8S etcd, master, worker components
• Container engine: Docker, CRI-O, etc.

OS: kernel, network, devices, services, etc.
Infrastructure: “raw” compute, network, storage

Full Stack Reliability

@olgch, @kublr

Architecture 101

• Layers are separate and independent

• Disposable/“restartable” components

• Re-attachable dependencies (including data)

• Persistent state is separate from disposable
processes
Pets vs cattle - only data is allowed to be pets
(ideally)

@olgch, @kublr

If a node has a problem...
• Try to fix it (pet)
• Replace or reset it (cattle)

Infrastructure and OS

Tools
• In-cluster: npd, weaveworks kured, ...

• hardware, kernel, servicer, container
runtime issues

• reboot
• Infrastructure provider automation

• AWS ASG, Azure Scale Set, ...
• External node auto recovery logic

• Custom + infrastructure provider API
• Cluster management solution
• (Future) cluster API

@olgch, @kublr

Components
• etcd

• Master: API server, controller
manager, scheduler

• Worker: kubelet, kube-proxy

• Container runtime: Docker,
CRI-O

Already 12 factor

Kubernetes Components: Auto-Recovery

Monitor liveliness, automate
restart
• Run as services

• Run as static pods

Dependencies to care about
• etcd data

• K8S keys and certificates

• Configuration

@olgch, @kublr

API Server

controller

manager

scheduler

API Server

controller

manager

scheduler

etcd data

etcd

etcd data

etcd

K8S multi-master
• Pros: HA, scaling

• Cons: need LB (server or client)

etcd cluster
• Pros: HA, data replication

• Cons: latency, ops complexity

etcd data
• Local ephemeral

• Local persistent (survives node failure)

• Remote persistent (survives node replacement)

Kubernetes Components: Multi-Master

API Server

etcd data

controller

manager

scheduler

etcd

kubectl

kubelet

@olgch, @kublr

• Persistent volumes

• Volume provisioning

• Storage categories
• Native block storage: AWS EBS, Azure Disk, vSphere volume,

attached block device, etc.

• HostPath

• Managed network storage: NFS, iSCSI, NAS/SAN, AWS EFS, etc.

• Some of the idiosyncrasies
• Topology sensitivity (e.g. AZ-local, host-local)

• Cloud provider limitations (e.g. number of attached disks)

• Kubernetes integration (e.g. provisioning and snapshots)

Container Persistence

@olgch, @kublr

• Integrates with Kubernetes
• CSI, FlexVolume, or native
• Volume provisioners
• Snapshots support

• Runs in cluster or externally
• Approach

• Flexible storage on top of backing storage
• Augmenting and extending backing storage

• Backing storage: local, managed, Kubernetes PV
• Examples: Rook/Ceph, Portworx, Nuvoloso, GlusterFS, Linstor,

OpenEBS, etc.

Cloud Native Storage

@olgch, @kublr

Data pool

mon

config

data

config

data

monmon

config

data

Cloud Native Storage: Rook/Ceph

raw data

osd

raw data

osd

raw data

mdsosd

Data pool

Image Image
Ceph

Filesystem

Components

Abstractions

Ceph

rgw

S3/Swift

Object Store

mgr

Rook

Operator

CSI plugins

osdosdganesha

NFS

CephCluster

Block Pool

Object Store

Filesystem

NFS

Object Store User

Provisioners
rbd-mirror

@olgch, @kublr

Operations: monitoring, log collection, alerting, etc.

Lifecycle: CI/CD, SCM, binary repo, etc.

Container management: registry, scanning, governance, etc.

Deployment options:

• Managed service

• In Kubernetes

• Deploy separately

Middleware

@olgch, @kublr

• Region to region; cloud to cloud; cloud to on-prem (hybrid)
• One cluster (⚠) vs cluster per location (✔)

Tasks
• Physical network connectivity: VPN, direct
• Overlay network connectivity: Calico BGP peering, native routing, …
• Cross-cluster DNS: CoreDNS
• Cross-cluster deployment: K8S federation
• Cross-cluster ingress, load balancing: K8S federation, DNS, CDN
• Cross-cluster data replication

• native: e.g. AWS EBS, Snapshots inter-region transfer
• CNS level: e.g. Ceph geo-replication
• database level: e.g. Yugabyte geo-replication, sharding, ...
• application level

Something Missing? Multi-Site

@olgch, @kublr

To Recap...

• Kubernetes provides robust tools for application reliability

• Underlying infrastructure and Kubernetes components
recovery is responsibility of the cluster operator

• Kubernetes is just one of the layers

• Remember Architecture 101 and assess all layers accordingly

• Middleware, and even CNS, can run in Kubernetes and be
treated as regular applications to benefit from K8S capabilities

• Multi-site HA, balancing, failover is much easier with K8S and
the cloud native ecosystem. Still requires careful planning!

@olgch, @kublr

Q&A

@olgch, @kublr

Oleg Chunikhin
CTO | Kublr

oleg@kublr.com

Thank you!

Take Kublr for a test drive!
kublr.com/deploy

Free non-production license

@olgch, @kublr

