

Get Your Windows Apps Ready for Kubernetes

Larry Zhang 张逸 Alex Yang 杨雨 Mirantis

Agenda

Why Windows Containers?

Windows runs the majority of workloads

On-premises Workloads

Source 1: IDC, <u>Worldwide Operating Systems and Subsystems Market Shares, 2017:</u> <u>A Market Rebounds and Is Poised for Strong Gains</u>, Doc #US43753318, May 2018

Source 2: Stack Overflow Developer Survey, 2015, 2016, 2017, 2018, 2019

.NET continues to be a top framework choice

63,585 responses; select all that apply

Source: Stack Overflow Developer Survey, 2019

Use Cases

Benefits across numerous initiatives

Windows Server 2008 is now end of life

January 14, 2020 has passed

End of standard support End of security patches End of hotfixes

Windows Server 2008 options

Considerations

Windows Server release channels

Long-Term Servicing Channel (LTSC) – Currently Windows Server 2019

- New major version of Windows Server every 2-3 years
- 5 years of mainstream support + 5 years of extended support
- Stable, predictable

Semi-Annual Channel (SAC) – Currently Windows Server, version 1909

- New versions twice a year (Spring + Fall)
- 18 months of support
- Faster release cadence with latest features
- Most features will be rolled into next LTSC release but not guaranteed
- Requires volume licensing or a cloud provider

Base image options

Nano Server	Server Core	Windows
<pre>mcr.microsoft.com/ windows/nanoserver:1909</pre>	<pre>mcr.microsoft.com/ windows/servercore:1909</pre>	mcr.microsoft.com/ windows:1909
Greenfield and cloud-native applications	Brownfield and Legacy applications	Carries most Windows OS components
.NET Core	.NET Framework	Win 32 APIs
~100 MB	~2 GB	~4 GB

Version Compatibility

Container OS Version	Host OS Version		
	Windows Server 2019 Builds 17763.*	Windows Server, version 1903 Builds 18362.*	Windows Server, version 1909 Builds 18363.*
Windows Server 2019 Builds 17763.*	PH	H	H
Windows Server, version 1903 Builds 18362.*	*	PH	H
Windows Server, version 1909 Builds 18363.*			РН

≫ MIRANTIS

Kubernetes clusters with Windows Server

Aligning pods and nodes

1. Taint nodes to not allow Windows Pods

```
kubectl taint node \
  [NodeName] beta.kubernetes.io/os=windows:NoSchedule
```


Name: worker01 Labels: beta.kubernetes.io/os=linux

2. Tolerate the taint in PodSpec

•••	
•••	
•••	

Name: worker02
Labels:
 beta.kubernetes.io/os=windows

Name: worker03 Labels: beta.kubernetes.io/os=linux

Keep in mind

History of Windows in Kubernetes

How do users authenticate to the application?

- Basic Authentication
- Forms Authentication
- Integrate Windows Authentication

How does the application authenticate to resources?

- Can the pod resolve a resource address?
- Is a Group Manage Service Account (gMSA) needed?
- Do worker nodes need to be domain joined?

Using AD with Windows Containers

Sample Credential Spec YAML

apiVersion: windows.k8s.io/v1alpha1

kind: GMSACredentialSpec

metadata:

name: gmsa-webapp-1 # used for reference

credspec:

ActiveDirectoryConfig:

GroupManagedServiceAccounts:

- Name: WebApp1 # GMSA account Username

Scope: CONTOSO # NETBIOS Domain Name

CmsPlugins:

- ActiveDirectory

DomainJoinConfig:

DnsName: contoso.com # DNS Domain Name

DnsTreeName: contoso.com # DNS Domain Name Root

Guid: 244818ae-87ac-4fcd-92ec-e79e5252348a # GUID

MachineAccountName: WebApp1 # GMSA account Username

NetBiosName: CONTOSO # NETBIOS Domain Name

Sid: S-1-5-21-2126449477-2524075714-3094792973 # GMSA SID

Logging considerations

Linux Applications

Log to STDOUT

 $\mathbf{\hat{y}} \rightarrow \texttt{docker}$ run -it --rm -p 80:80 nginx:alpine

172.17.0.1 - - [07/Jan/2020:13:17:18 +0000] "GET / HTTP/1.1" 3
10_15_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.39
172.17.0.1 - - [07/Jan/2020:13:17:21 +0000] "GET / HTTP/1.1" 3
10_15_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.39
172.17.0.1 - - [07/Jan/2020:13:17:24 +0000] "GET / HTTP/1.1" 3
10_15_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.39

Windows Applications

Log to ETW, Event Log, & custom files PS C:\> docker run -it --rm -p 80:80 mcr.microsoft.com
/windows/servercore/iis:windowsservercore-ltsc2019

Service 'w3svc' started

Using the LogMonitor tool

LogMonitor tool roadmap

- Rotating log support
- Environment variable configuration support
- ConfigMap support
- Integrations with log aggregation services at scale
- Configuration updates during container runtime
- Performance
- Sidecar usage patterns
- Log driver support

https://github.com/microsoft/windows-container-tools/tree/master/LogMonitor

What data is required for your application?

- Is that data persistent?
- How large is the data?
- Databases? File Shares? Local disk locations?

Move towards databases when possible

Extract sensitive values

Identify sensitive components of applications

- Passwords
- Connection Strings
- Certificates

Utilize Kubernetes Secrets

- Clean separate between application and configuration
- RBAC-enabled to ensure proper access

State of K8S storage with Windows

In-tree and FlexVolume plugins available today

- File-based cloud volumes
 - Azure File through SMB
- Block based cloud volumes
 - Azure Disk
 - GCE Persistent Disk
 - AWS EBS (WIP)
- iSCSI Support (WIP)
- External Provisioners coming soon
- Container Storage Interface (CSI)
 Becoming the standard for Linux containers
 Support for Windows is coming but not ready

Demonstration

Copyright © 2019 Mirantis, Inc. All rights reserved

Summary

Summary

Containerize legacy applications to gain agility & cost savings Start small & develop muscle around Kubernetes Consider identity & storage needs early

Resources

SIG-Windows https://github.com/kubernetes/community/tree/master/sig-windows

K8S Windows Development Kanban

https://github.com/orgs/kubernetes/projects/8

Microsoft Documentation

<u>https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/getting-</u> <u>started-kubernetes-windows</u>

Kubernetes Documentation

https://kubernetes.io/docs/setup/production-environment/windows/intro-windows-in-k ubernetes/

Resources

White Paper

Delivering Safer Apps with Docker Enterprise and Windows Server

http://bit.ly/docker-enterprise-windows-server

docker Microsoft
Delivering Safer Apps with Docker Enterprise and Windows Server

Thanks!

Contact us at: <u>mirantis.com/contact</u> Questions: <u>china@mirantis.com</u>

KubeCon 2019 Talks

- Introduction to Windows Containers in Kubernetes
 Michael Michael, VMware & Deep Debroy, Docker
- <u>Day 2 Operations with Windows Containers -</u> <u>Michael Michael, VMware & Patrick Lang, Microsoft</u>
- <u>Superpowers for Windows Containers Deep</u>
 <u>Debroy & Jean Rouge, Docker</u>
- <u>Storage Provisioning for Kubernetes on Windows -</u> <u>Anusha Ragunathan & Jean Rouge, Docker</u>

