
linkerd
William Morgan ~ william@buoyant.io ~ @wm

mailto:william@buoyant.io

Linkerd (“linker-dee”) is an open source
service mesh for cloud-native applications

github.com/linkerd/linkerd

slack.linkerd.io
linkerd.io

http://github.com/linkerd/linkerd
http://slack.linkerd.io
http://linkerd.io

13 months old

600+ Slack channel members

1600+ Github stars

200k+ Docker Hub pulls

30+ contributors

20+ confirmed prod users

100b+ production requests

CENSORED

CENSORED

CENSOREDBy the numbers

A dedicated infrastructure layer for
service-to-service communication.

Decoupled from the application.

Focused on services and requests.

What’s a service mesh?

datacenter

[1] physical

[2] link

[3] network

[4] transport
kubernetes, DC/OS, swarm, …
 
canal, weave, …

aws, azure, digitalocean, gce, …

business languages, libraries[7] application

[5] session

[6] presentation JSON, protobuf, thrift, …

http/2, http, mux, …

service
mesh

Because service-to-service (“east-west”)
communication needs to be monitored,

managed, and controlled.

Why do I need a service mesh?

You weren’t running containerized
microservices in an orchestrated

environment before.

But I never needed this before!

1. Linkerd is deployed per-host or per-pod.

2. It acts as a transparent proxy + reverse proxy for
internal requests.

3. Applications send their HTTP/gRPC/… calls through
their local Linkerd instance

4. That’s it!

How does it work?

The Linkerd service mesh

Service C

Service B

Service A

linkerd

Service C

Service B

Service A

linkerd

Service C

Service B

Service A

linkerd

application HTTP
proxied HTTP
monitoring & control

Node 1 Node 2 Node 3

Adds reliability: latency-aware load balancing, circuit
breaking, retry budgets, deadlines

Decouples transport protocol from app protocol:
transparent TLS, HTTP/1.1 -> HTTP/2, …

Sanitized naming: decouples architectural names (the
“users” service”) from deployment names (“DC1/prod/
users/v4”)

What does it do?

Adds logical routing and traffic shifting: routing rules give
runtime control over logical -> concrete mapping

Glues worlds: multiple SDs, e.g. merge K8s and non-K8s
service namespaces!

Failover and hybrid cloud: unified routing layer

Consistent, global metrics! Provides distributed traces and
top-line metrics like success rates and latencies

What does it do? (Part II)

But Kubernetes
already has
load
balancing /
service
discovery / …

Some examples

Timeouts

timelines

users

web

db

timeout=400ms
retries=3

timeout=400ms
retries=2

timeout=200ms
retries=3

timelines

users

web

db

Timeouts

timelines

users

web

db

timeout=400ms
retries=3

timeout=400ms
retries=2

timeout=200ms
retries=3

timelines

users

web

db

800ms!

600ms!

Deadlines

timelines

users

web

db

timeout=400ms

deadline=323ms

deadline=210ms

 77ms elapsed

113ms elapsed

Retries

Typical:

 retries=3

Retries

Typical:

 retries=3
worst-case: 300% more load!!!

Budgets

Typical:

 retries=3

Better: 
 retryBudget=20%

worst-case: 300% more load!!!

worst-case: 20% more load

lb algorithms:

• round-robin

• fewest connections

• queue depth

• exponentially-weighted
moving average (EWMA)

• aperture

Request-level load balancing

Linkers and Loaders, John R. Levine, Academic Press

A linker for your datacenter

Logical naming
applications refer to
logical names 

requests are bound to
concrete names 

mapping from logical to
concrete is routing

/svc/users

/#/io.l5d.k8s/prod/users
/#/io.l5d.k8s/staging/users

/svc => /#/io.l5d.k8s/prod

Per-request routing: staging

GET / HTTP/1.1 
Host: mysite.com  
l5d-dtab: /svc/B => /svc/B2

Per-request routing: debug proxy

GET / HTTP/1.1 
Host: mysite.com 
l5d-dtab: /svc/E => /svc/P/svc/E

Thank you!
Demo time

William Morgan ~ william@buoyant.io

linkerd

mailto:william@buoyant.io

